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Abstract

This study investigates the dynamics of water droplets within a Batchelor vortex. Such an analytically de-
scribed flow structure serves here as a model that may capture the essence of a trailing vortex. A Lagrangian
approach is used to analyze the coupling between droplet motion and the flow field generated by the vortex.
Under certain thermodynamic and hydrodynamic conditions, droplets may undergo evaporation and conden-
sation when circulating the vortex core due to sharp changes in the environmental conditions induced by the
vortex. The vortex-induced pressure drop is quantified using a non-dimensional vortex Euler number, revealing
conditions required for condensation initiation within the vortex core. The onset of condensation is character-
ized by defining a mass transfer coefficient, indicating the direction and extent of mass transfer to the droplets.
Our study uncovered a distinct clustering phenomenon linked to the initial Stokes number, with droplets show-
ing a tendency to aggregate at higher Stokes numbers. The presented model may offer valuable insights into
droplet dynamics within trailing vortices, contributing to improved modeling and prediction of droplet transport
phenomena in the vicinity of trailing vortices.
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1. Introduction

While the interactions between droplets and their environment are a fundamental problem in fluid
mechanics [1}, 2], our understanding of such phenomena is far from complete. The complexity of
the general problem arises from the strong coupling between the carrier flow and the transport of
mass, momentum, and heat to the droplet, thus limiting the scope of any general analysis. Past
studies have thoroughly investigated the two-way coupling between simple vortices and droplets with
a comparable length scale and found that these vortical structures could significantly alter the droplet
evaporation rate in spray combustion systems [3-8]. Nevertheless, a large vortical structure might
completely change the dynamics and thermal behavior of the single droplet [9-13].

A clear manifestation of such complex interactions is wingtip trailing vortices, which enhance the
condensation and freezing of the air’s vapor content and contribute to the formation of condensation
trails. The resultant multiphase flow structures might alter the local radiative forcing and the photo-
chemistry of the atmosphere [14]. The interaction between trailing vortices and dispersed particles
may also influence the efficiency of aerial agricultural spraying, as the aircraft wake can alter the mo-
tion of the spray drops [15]. The analysis of multiphase trailing vortices using high-fidelity simulations
may require the implementation of Lagrangian particle tracking. However, incorporating a detailed
model might have high computational costs, even for relatively simple setups. Therefore, we offer a
new Lagrangian analysis of the dynamics of droplets swirling within a simple, analytically described
viscous vortical flow structure, the well-known Batchelor vortex. Batchelor [16] suggested an exten-
sion of such a similarity solution for modeling a trailing vortex far downstream from the wing itself
owing to the complexity of such a three-dimensional unsteady problem [17].

Hence, our analysis aims to reveal the complex interaction between Batchelor’'s Lamb-Oseen-based
vortex and a Lagrangian droplet as it may undergo both evaporation and condensation due to sharp
changes in the environmental conditions generated by the vortex. The nonlinear relations between
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Figure 1 — Carrier flow setup.

the carrier flow fields, droplet relaxation time, drag forces, mass convection, and heat exchange will
be derived and analyzed. The isolation of the interaction between the modeled vortical flow and
the droplets allows for a rudimentary, parametric investigation of the transport processes. Thus, the
proposed model offers a new analytic tool that might aid in uncovering the underlying physical mech-
anisms governing the fundamental problem of droplet evaporation and condensation within wingtip
trailing vortical structures.

2. Governing Equations

The transport of discrete micron-sized droplets within a steady, analytically-described Batchelor vor-
tex is analyzed here using a Lagrangian approach. The single droplet’s spatial location x,,, velocity u,,,
diameter d,,, and temperature T, are traced and coupled to the local flow u,, pressure py, and tem-
perature Ty fields. We assume the droplets are dispersed and dilute enough such that their motion
does not affect the flow field; furthermore, any potential interactions between droplets are discounted.
The equations for the carrier flow and the Lagrangian droplet are presented as follows.

2.1 Carrier flow

The investigated carrier flow, a three-dimensional Batchelor vortex, describes an axisymmetric vorti-
cal structure decaying due to viscous effects. The initial vortex intensity I' is determined by the wing’s
geometry and the flight conditions. The customary time variable ¢ is replaced here by U and z, the
flight velocity and downstream distance from the wing, correspondingly. Assuming the trailing vortex
system is generated by a wing on which the total drag force is D, the velocity field of such flow may
be expressed in cylindrical coordinates as
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when considering that the axial and azimuthal velocities decay independently [16]. Since the Batch-
elor vortex is an exact solution of the Navier-Stokes equation, we may extract an analytic expression
for the pressure field induced by the vortical flow. As we investigate the droplets’ dynamics near a
vortical structure, this model assumes that the pressure drop is induced only by the circulation. The
pressure term yields [17]
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given that py is the far-field pressure and Ei(x) = [* e %/& d& is the tabulated exponential integral
notation.

We set ¢, the wing’s chord length as the characteristic radial length, U as the characteristic velocity,
and introduce the normalized variables

r=7/c; z=27%/cReg n:r2/4z; u=1i/U; p=p/po, (3)
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Figure 2 — Normalized pressure distribution ps(r,z) for various values of the non-dimensional Euler
number Eu, as predicted by Eq. (5). (a) Radial pressure distribution at axial location z = 1. (b)
Pressure distribution across the vortex axis at radial location r = 1.

where Re. = cU/vy. Hence, Eq. (1) and Eq. (2) may be written in a dimensionless form as
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using three dimensionless parameters: the wing’s drag coefficient

D
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the vortex swirl number r
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and the vortex Euler number
pT? _ ipUs’
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which signifies the ratio between the dynamic pressure drop and the total pressure.

Fig. [f]demonstrates the relation between Eu, and the pressure field around the idealized trailing vor-
tex; an increase of Eu, manifests in lower absolute pressures at the origin of the vortex. The derived
pressure field is used hereafter to couple the Lagrangian droplet transport with the thermodynamic
gradients induced by the vortical flow. We also consider the vortex to be adiabatic; hence, one may
couple the temperature field within the vortical viscous core to the pressure field

i 5\
T =T (f) . (9)
Po

The temperature field outside the droplet is crucial for finding the droplet temperature, as it is dictated
by, among other mechanisms, heat diffusion to the droplet.

2.2 Lagrangian equations

Maxey and Riley [18] formulated the generalized equations of motion for small particles in nonuniform,
unsteady flows; they considered both gravity, drag, virtual mass, and the Basset "history" force. This
study concerns the motion of a small liquid droplet in a gaseous medium; as such the particle-medium
density ratio is large, and the droplet’s characteristic length is much smaller relative to the vortex
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viscous core size. Hence, we neglect the forces due to undisturbed flow, virtual mass, Faxen’s drag
correction, rotational inertia, and particle history terms. Additionally, we do not account for gravity
and assume a linear drag term; the influence of both on the droplet dynamics will be relaxed and
examined in future studies. We may now reduce the general form of the equations to the following:
dx
o
dup, ur—uy

= 11
dt S’[kodiz7 ’ ( )

where x, and u,, are the droplet location and velocity vectors in the vortex frame of reference, respec-
tively. d,, is the particle diameter normalized by its initial diameter dy, and

(10)
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is the droplet initial Stokes number — the ratio between the particle’s initial relaxation time and free-
stream flow time scale.

The size of the Lagrangian particle is governed by heat and mass transfer processes. Kulmala
[19] 20] formulated the diffusive mass transfer at the droplet-gas interface for a quasi-stationary case
while assuming that the medium is an ideal gas, the droplet-gas interface is saturated and a zeroth-
order mass fraction profiles around the droplet. Although droplet ventilation may enhance the mass
transfer out of the droplet, we aim to isolate the role of mass diffusivity and consider it as the primary
transfer mechanism. In terms of droplet diameter, the mass equation is

d(d]%) 4p\>;k,oo <p0pf_pv.,p> .

dt - 9SCStk0pf POPf — Pveo
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(12)

(13)

Sc is the non-dimensional Schmidt number, p;, is the vapor ideal gas density in ambient conditions,
pv,p IS partial vapor pressure at the particle interface, and p,.. is the ambient partial vapor pressure.
The difference between the vapor partial pressure at the interface and the vapor partial pressure at
the far field dictates the mass flux to and from the droplet. Thus, we shall estimate both by assuming
the Lagrangian particle consists of pure liquid water and the gaseous media is an air-vapor mixture
with a relative humidity of ¢. The diffusive driving force reduces to a single dimensionless number,
the mass transfer coefficient C,, [12]; its generalized term is

PoPf — Pvp — 1+ ¢psat (TO) — Psat (Tp)
POPf — Proo pors — 9 Psar(To)

= 1+C,. (14)

Ty is the far-field carrier fluid temperature, Tp is the (dimensional) droplet temperature, and py,(T) is
the vapor saturation pressure at a given temperature. The mass transfer coefficient sign and value
indicate the nature of the mass transfer: evaporation occurs when C,, < 0 and the droplet interface
vapor pressure is higher than far-field pressure, condensation occurs for C,, > 0 and the far-field
vapor pressure is higher than the droplet interface pressure, whilst the mass flux is proportional to
the transfer coefficient value i o< |C,,|.

The droplet temperature is regulated by heat conduction and convection to the carrier medium at the
droplet surface, the sensible heat stored within it, and heat advection due to mass transport. One may
derive [13] the normalized energy conservation equation for a single droplet assuming a zeroth-order
temperature profile around the droplet. First, we introduce the non-dimensional temperature

T-T, T-T
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(15)

where Ty, (po) is the vapor saturation temperature at the ambient pressure. Now, the Lagrangian
energy equation yields

d6y _ 2 |g dld) Aoy
dt — 3d2 O dr " 9PrStkoc,,
4

(67 (xp) = ) | » (16)



Nonlinear Droplet Dynamics in Idealized Trailing Vortices

3 :
Eu, =0.05
Eu, =0.15 |
2.5 ¢ Eu, = 0.25
24
=
S1.5f
oo
1F
0.5 :
0 I I H | I .
0.5 1 1.5 2 2.5
z z

Figure 3 — Condensation core radius R.,,; along the vortex axis for different vortex Euler numbers,
relative humidities, and ambient temperatures. (a) Constant Euler number Eu, = 0.15 and varying
relative humidities ¢. (b) Constant air relative humidity ¢ = 0.8 and varying vortex Euler numbers
Eu,. Dashed lines denote results obtained for ambient temperature of 7y = 290K, while solid and

dotted lines denote results obtained for T, = 280K and Ty = 274K, correspondingly.

where 6, (x,) is the normalized carrier temperature at the droplet location, ¢, ¢ is the carrier fluid heat
capacity, ¢, , is the droplet heat capacity, Pr = ¢, sv;/psks is the dimensionless Prandtl number. We
also introduce a modified Stefan number, defined here as the ratio between the droplet substance’s
latent heat of evaporation and sensible heat maxima

Stey = (17)

cp pATy’
denoting the latent heat of vaporization as L.

Both the thermodynamic conditions and the vortex properties may affect the mass transfer coefficient
C,, field within it. The pressure drop due to the rotating flow may give rise to distinct condensa-
tion zones within the vortex core; the following section analyzes the influence of the dynamics of
Lagrangian water droplets in and around vortices sustaining such conditions.

3. Results
3.1 Condensation core

The interaction between ambient thermodynamic conditions and localized variations induced by the
vortex dictates the behavior of the mass transfer coefficient, potentially leading to a change in its
sign near the vortex center. Namely, given the right conditions, condensation initiates in the vortex
viscous core — as exhibited in many natural phenomena and industrial applications. Fig.[3|illuminates
the relation between ambient properties and the evolving condensation core of the vortex. Near the
wing, where z tends to 0, the condensation core reaches the maximal radial value. However, as the
circulation decays along the vortex axis, a decrease in pressure drop occurs. Thus, the condensation
core radius progressively shrinks, and eventually, far from the wing, the core disappears as expected.
The influence of air relative humidity is depicted in Fig.|3|(a). Lower relative humidity leads to smaller
condensation cores that decay rapidly along the vortex axis. Moreover, a nonlinear relation between
the changes in the relative humidity and the core size emerges; the core size significantly increases
and subsequently diverges as ¢ — 1. Fig. [3(b) illustrates how the vortex Euler number, represent-
ing the ratio between ambient and dynamic pressures within the vortex, affects the behavior of the
condensation core. As expected, lower Euler values result in smaller cores. Notably, the values of
the vortex Euler number are constrained by physical considerations. For instance, when Eu > 0.25,
the pressure at the vortex center p,(r = 0) drops below absolute zero, an impossible thermodynamic
state in gases. Realistically, the limit of physically possible trailing vortices is significantly lower. The
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Figure 4 — Selected results of the Lagrangian model for droplets of various initial Stokes numbers:
(a-b) Stko = 0.1, (c-d) Stkyg = 1, and (e-f) Stko = 10. The condensation core is illustrated by a blue
ellipsoid, marking the edges of the region in which condensation occurs. LHS panels (a),(c), and (e)
present the three-dimensional trajectories of droplets placed at equal distances along x and y axes
inside the condensation core. RHS panels (b),(d), and (f) present the radial location of the droplets
as a function of their location along the vortex axis.

effect of ambient temperatures in the range T = 274K — 290K is also explored and presented in Fig.
Smaller cores, corresponding to lower Eu, or ¢ values, are less influenced by temperature changes.
However, given larger cores, the ambient temperature impact becomes more pronounced, though
still relatively minor compared to other parameters. However, the air relative humidity is strongly
temperature-dependent, indirectly influencing the characteristics of the condensation core.
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3.2 Droplet dynamics

The Lagrangian governing equations presented in sec. 2 suggest that one may characterize the
complete dynamic and thermal behavior of a droplet in the vicinity of idealized trailing vortices in
terms of four state variables X, = [xp,u,,d, 6,]. The complex coupling between the external, vortex-
induced forcing and the droplet’s response gives rise to a nonlinear dynamic system,

X, =F(Xp,Xp,...) - (18)

While aiming to investigate the system’s dynamic response, the nonlinear ODE system will be solved
numerically using an adaptive time-stepping RK4 scheme.

Since we seek to study the dynamics of water droplets within trailing vortices wherein condensation
cores are forming, the air's thermodynamic properties are fixed at pg = latm, Ty = 280K, and ¢ = 0.8.
Here we focus our discussion on the influence of the droplet’s properties, i.e., initial location x;, 9 and
Stko, and thus set the vortex flow properties to be constant: Eu, =0.15,S = 1,Cp = 0.05. Furthermore,
the droplet area will be limited to df, > 0.1. Droplets crossing these thresholds are eliminated from
the simulation; the mass equation, Eq. (13), cannot capture the droplet's complete drying without
imposing an arbitrary threshold on the droplet’s size.

Fig. [4] illustrates selected results of the Lagrangian model for droplets with various initial Stokes
numbers: (a-b) Stko = 0.1, (c-d) Stky = 1, and (e-f) Stko = 10. In each case, 20 droplets are distributed
along the x and y axes inside the condensation core at equal distances from each other, all placed
at z =0.1. An initial no-slip condition is assumed, as the droplet’s initial velocity is set to be equal
to the local flow velocity. Similarly, the droplets are considered to maintain thermal equilibrium with
the surrounding air, 6,(xp) = 6;. The initial Stokes number is determined by both the flow regime and
droplet size; the latter is dictated by the nucleation mechanism and is coupled to the thermodynamic
conditions at nucleation inception.

For initial Stokes numbers below unity (Stky < 1), Fig. [4(a-b) reveals that the droplets retain scattered
distribution without notable clustering. Their spread radius slightly exceeds the initial condensation
core radius, indicating a relatively even dispersion throughout the vortex flow. However, clustering
phenomena become more apparent as the initial Stokes number reaches unity (Stko = 1). Fig. [4(d)
highlight that this clustering primarily occurs when droplets exit the condensation core region, typically
between z =1 and z = 5. Beyond z = 10, the droplets’ radial position stabilizes as they steadily swirl
within the vortex, ultimately undergoing complete evaporation.

With further increases in the initial Stokes number, particularly surpassing Stk > 1, clustering be-
comes more pronounced. Such droplets tend to aggregate around specific radial locations, forming
dense clusters with distinct spatial patterns. In the case of Stky = 10, Fig. [4(f) reveals that the clus-
tering radius is expanding, surpassing the initial condensation core radius. The resulting pattern re-
sembles an annular formation surrounding the core of the trailing vortex, with droplets accumulating
around a specific radius. Such behavior holds significant implications for the transport and disper-
sion of droplets within vortical flows. This result implies that a proper analysis of the droplet dynamics
must incorporate a model accounting for droplet-droplet interactions, e.g., collision, coalescence, and

grouping.

4. Conclusions

A mathematical analysis of discrete droplet dynamics within a Batchelor vortex was conducted, re-
vealing the complex coupling between the droplet motion and the thermodynamic gradients gener-
ated by the vortex. A Lagrangian approach is used to analyze the coupling between droplet motion
and the flow field generated by the vortex. Under certain thermodynamic and hydrodynamic condi-
tions, droplets may undergo evaporation and condensation when circulating the vortex core due to
sharp changes in the environmental conditions induced by the vortex. We evaluated the pressure
drop due to the vortical flow and quantified it using a non-dimensional vortex Euler number Eu,. The
resultant gradients may be large enough to initiate condensation within the vortex core. The onset
of condensation was studied by defining a mass transfer coefficient C,,, indicating the direction and
extent of mass transfer to the Lagrangian water droplet. Our study uncovered a distinct clustering
phenomenon linked to the initial Stokes number, with droplets showing a tendency to aggregate at
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higher Stokes numbers. In summary, the presented model offers valuable insights into droplet dy-
namics within trailing vortices, contributing to improved modeling and prediction of droplet transport
phenomena across various fields, from atmospheric science to engineering applications.
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